Topological phase transitions in the repulsively interacting Haldane-Hubbard model

T. I. Vanhala1,2, T. Siro1, L. Liang1, M. Troyer2, A. Harju1 and P. Törmä1,2

1) COMP Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
2) Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland
email: tuomas.vanhala@aalto.fi

Using dynamical mean-field theory and exact diagonalization we study the phase diagram of the repulsive Haldane-Hubbard model, varying the interaction strength and the sublattice potential difference. In addition to the quantum Hall phase with Chern number $C = 2$ and the band insulator with $C = 0$ present already in the noninteracting model, the system also exhibits a $C = 0$ Mott insulating phase, and a $C = 1$ quantum Hall phase. We explain the latter phase by a spontaneous symmetry breaking where one of the spin-components is in the Hall state and the other in the band insulating state. \cite{1} This study has been performed using an extended version of our DMFT code \cite{2} which allows the treatment of complex hopping terms.

Figure 1: The phase diagram of the model as a function of the Hubbard interaction strength U and the sublattice potential difference Δ_{AB} obtained within mean-field theory (MF), finite size exact diagonalization (FS-ED) and single-site dynamical mean-field theory (DMFT). The lines indicate the topological transitions where the Chern number C changes.

\[\text{Figure 1: The phase diagram of the model as a function of the Hubbard interaction strength } U \text{ and the sublattice potential difference } \Delta_{AB} \text{ obtained within mean-field theory (MF), finite size exact diagonalization (FS-ED) and single-site dynamical mean-field theory (DMFT). The lines indicate the topological transitions where the Chern number } C \text{ changes.}\]